High Voltage high side switch
 BA4910FP

Description

The BA4910FP is a high voltage high side switch which has an output that can be turned ON/OFF by a CTL pin. Circuit current of $1 \mu \mathrm{~A}$ (Typ.) at standby is perfect for power saving. Applications are various including car stereos and printers.

Features

1) Maximum voltage of 50 V PNP
2) Due to built-in output current control, IC is protected from destruction caused by output short circuits
3) Built-in over current detection delay circuit
4) Surge resistant due to over voltage protection circuit being built-in.
5) Built-in temperature protection circuit to protect IC from thermal destruction

Dimension (Units:mm)

TO252-5

Applications

Car Stereos
Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits	Unit
Applied voltage 1	$\mathrm{~V}_{\mathrm{CC}}$	50	V
Applied voltage 2	CTL	10	V
Power dissipation	Pd	$1000{ }^{*} 1$	mW
Operating temperature range	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Peak supply voltage	$\mathrm{V}_{\mathrm{CC}} \mathrm{PEAK}$	$60{ }^{* 2}$	V

*1 Derating: $8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
*2 $\mathrm{tr} \geqq 1 \mathrm{msec}$. Applied voltage: within 200msec.

Recommended Operating Conditions ($\mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	V_{IN}	8.5	14.4	16	V

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
<INPUT>						
Stand by current	Ist	-	-	10	$\mu \mathrm{A}$	CTL pin=0V
Operating current	Icc	3.3	5.5	7.7	mA	CTL pin $=5 \mathrm{~V}$, lo $=0 \mathrm{~mA}$
<OUTPUT>						
Dropout voltage	\triangle Vo1	-	0.5	1.0	V	$10=400 \mathrm{~mA}$
Load regulation	\triangle Vo2	-	450	900	mV	$10=0 \sim 400 \mathrm{~mA}$
Output current	Io	500	-	800	mA	Vo \geqq VIN- \triangle Vo1MAX ${ }^{*}{ }^{\text {² }}$
<CTL pin>						
Standby level	Vthsw1	-	-	1.5	V	
Active level	Vthsw2	3.8	-	v	V	
Input high current	linsw	16	27	38	$\mu \mathrm{A}$	$\mathrm{Vth}=3.5 \mathrm{~V}$
<Delay time setting CP pin>						
Threshold voltage	$\mathrm{V} \triangle$ th	0.8	0.85	0.9	V	\triangle (Vth-VCP)
Capacitor charging current *2	Icp	1.2	2.0	2.8	$\mu \mathrm{A}$	

*1 \triangle Vo1max=Maximum of minimum I/O differential voltage
*2 When $\mathrm{CP}=0.47 \mu \mathrm{~F}$, delay time $=200 \mathrm{msec}$.(TYP)
This product is not designed with anti-radiation capability.
Output current can be used within min. of lo.

Application circuit

