System power supply for CD playerequipped audio systems BA3963

With 5V and 7V outputs and a reset output that detects the 5V output, the BA3963 power supply IC is best suited for CD player-equipped audio systems.

Applications

CD player-equipped audio systems

Features

- 1) A 5V output, a 7V output, and a reset output are built in.
- 2) All output circuits use a PNP transistor with a low saturation voltage.
- 3) Current limit circuit protects the IC against short-circuiting damage.
- 4) Thermal protection circuit prevents heat damage to the IC.
- 5) Compact SIP-M12 package allows a large power dissipation.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	23	V
Power dissipation	Pd	3000*	mW
Operating temperature	Topr	-25~+75	C
Storage temperature	Tstg	$-55 \sim +150$	C

* Reduced by 24mW for each increase in Ta of 1 °C over 25 °C.

•Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	5.6	12	22	V

Block diagram

Pin descriptions

Pin No.	Pin name	Function
1	MODE1	5V output ON/OFF switching
2	MODE2	7V output ON/OFF switching
3	С	Capacitor pin for setting the delay time
4	RRC	Capacitor pin for improving the ripple rejection
5	Reset output	Power supply output current (1mA)
6	5V output	Power supply output current (400mA)
7	Vcc	DC power supply input
8	N. C.	_
9	N. C.	_
10	7V output	Power supply output current (1A)
11	PRE GND	Small current GND
12	GND	Large current GND

Input / output circuits

Units: R [Ω]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Standby supply current	lsт	-	720	900	μA	VTH1, VTH2=0V
$\langle 5 \text{ V output section} angle$		•		•		
Output voltage 1	V01	4.75	5.0	5.25	V	lo1=320mA
Voltage regulation	ΔV011	_	70	200	mV	lo1=320mA
Load regulation	ΔV012	-	65	200	mV	lo=0~320mA
Minimum I/O voltage differential	Δ V 013	-	0.7	1.0	V	lo1=320mA
Output current capacity	lo1	400	_	-	mA	
Ripple rejection ratio	R.R11	50	64	-	dB	f=120Hz, Io=320mA
Ripple rejection ratio *	R.R12	60	74	-	dB	f=120Hz, Io=320mA
$\langle 7 V output section angle$						
Output voltage 2	Vo2	6.65	7.0	7.35	V	lo2=800mA
Voltage regulation	ΔV021	-	65	200	mV	Io1=800mA
Load regulation	ΔV022	-	140	300	mV	lo1=0~800mA
Minimum I/O voltage differential	ΔV023	-	0.7	1.0	V	Io1=800mA
Output current capacity	I 02	1.0	_	-	A	
Ripple rejection ratio	R.R2	50	57	-	dB	f=120Hz, Io=800mA
$\langle Reset \ section angle$						
Output voltage when HIGH	Vres1	4.7	4.95	5.2	V	lload=1mA
Output voltage when LOW	Vres2	-	0.1	0.2	v	lsink=0.5mA
Threshold voltage	Vreth	3.95	4.2	4.45	V	
Hysteresis voltage	Vhys	50	150	250	mV	
Reset output delay time	Td	7.5	10	12.5	ms	Cd=0.1 µ F
(Output control section)						
MODE 1 threshold voltage	V _{TH1}	1.1	1.4	1.7	V	
MODE 2 threshold voltage	VTH2	1.1	1.4	1.7	V	
Input high level current	Im	0.46	0.77	1.1	mA	Vтн1, Vтн2=5V

* Asterisked ripple rejection ratio corresponds to the case where capacitors (1 µ F) are used between pins 4 and 6.

ONot designed for radiation resistance.

Circuit operation

OUT 5V rises when MODE 1 is 1.4V (Typ.), and OUT 7V rises when MODE 2 is 1.4V (Typ.). The reset output rises with a delay time (td) when OUT 5V is 4.2V (Typ.), and rises when OUT 5V is 4.1V (Typ.).

Fig.1 Timing chart

Fig.2 Input voltage vs. output voltage

Fig.3 Timing of reset operation

Application example

Operation notes

(1) Operating power supply voltage

When operating within proper ranges of power supply voltage and ambient temperature, most circuit functions are guaranteed. Although the rated values of electrical characteristics cannot be absolutely guaranteed, characteristic values do not change drastically within the proper ranges.

(2) Power dissipation (Pd)

Refer to the heat reduction curves (Fig. 5) and the rough estimation of IC power dissipation given on a separate page. If power dissipation exceeds the allowable limit, the functionality of IC will be degraded (such as reduction of current capacity by increased chip temperature). Make sure to use the IC within the allowable range of power dissipation with a sufficient margin.

(3) Preventing oscillation at each output

To stop oscillation of output, make sure to connect a capacitor having a capacitance of 10μ F or greater between GND and each output pin. Also, the 5V output ripple rejection is improved by connecting a capacitor having a capacitance of 1μ F or greater between pins 4 and 6. When connecting the capacitors, be sure to connect the polarities correctly. Oscillation of output can occur if capacitance is susceptible to temperature. We recommend using a tantalum electrolytic capacitor with minimal changes in capacitance.

(4) Overcurrent protection circuit

An overcurrent protection circuit is installed in each output system, based on the respective output current. This prevents IC destruction by overcurrent, by limiting the current with a curve shape of "7" in the voltage-current graph. The IC is designed with margins so that current flow will be restricted and latching will be prevented even if a large current suddenly flows through a large capacitor. Note that these protection circuits are only good for preventing damage from sudden accidents. Make sure your design does not cause the protection circuit to operate continuously under transitional conditions (for instance, when output is clamped at 1V_F or higher, short mode circuit operates at 1V_F or lower). Note that the circuit ability is negatively correlated with temperature.

Thermal derating curve

Estimate of allowable power dissipation (PMAX.)

- Power consumed by OUT 5V
- Power consumed by OUT 7V
- Power consumed by the reset output
- Power consumed internally by each circuit

$$P_{MAX.} = P_1 + P_2 + P_3 + P_4$$

(5) Thermal protection circuit

A built-in thermal protection circuit prevents thermal damage to the IC. All outputs are switched OFF when the circuit operates, and revert to the original state when temperature drops to a certain level.

(6) Grounding

To minimize the variation of output voltage due to variations in load current, the GND (pin 12, for large current) and the PRE GND (pin 11, for small current) pins are separately provided. Make sure to connect circuits to correct pins.

 $\begin{array}{l} P_1 = (V_{CC} - 5V) \times maximum \mbox{ output current of OUT 5V} \\ P_2 = (V_{CC} - 7V) \times maximum \mbox{ output current of OUT 7V} \\ P_3 = (V_{CC} - 4.95V) \times maximum \mbox{ output current of the reset output} \\ P_4 = V_{CC} \times \mbox{ supply current} \\ \end{array}$

•External dimensions (Units: mm)

