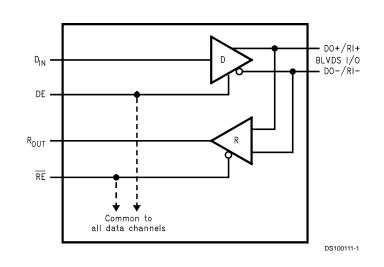
February 2001

DS92LV090A 9 Channel Bus LVDS Transceiver

General Description

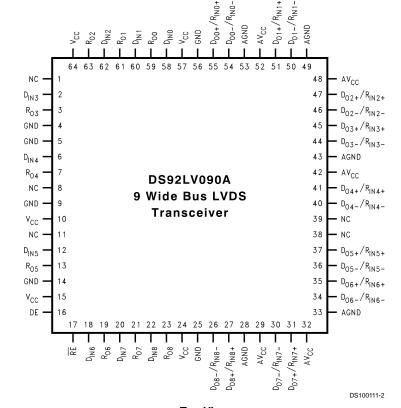
The DS92LV090A is one in a series of Bus LVDS transceivers designed specifically for the high speed, low power proprietary backplane or cable interfaces. The device operates from a single 3.3V power supply and includes nine differential line drivers and nine receivers. To minimize bus loading, the driver outputs and receiver inputs are internally connected. The separate I/O of the logic side allows for loop back support. The device also features a flow through pin out which allows easy PCB routing for short stubs between its pins and the connector.


The driver translates 3V TTL levels (single-ended) to differential Bus LVDS (BLVDS) output levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition, the differential signaling provides common mode noise rejection of $\pm 1V$.

The receiver threshold is less than $\pm 100 \text{ mV}$ over a $\pm 1\text{V}$ common mode range and translates the differential Bus LVDS to standard (TTL/CMOS) levels. (See Applications Information Section for more details.)

Features

- Bus LVDS Signaling
- 3.2 nanosecond propagation delay max
- Chip to Chip skew ±800ps
- Low power CMOS design
- High Signaling Rate Capability (above 100 Mbps)
- 0.1V to 2.3V Common Mode Range for V_{ID} = 200mV
- ±100 mV Receiver Sensitivity
- Supports open and terminated failsafe on port pins
- 3.3V operation
- Glitch free power up/down (Driver & Receiver disabled)
- Light Bus Loading (5 pF typical) per Bus LVDS load
- Designed for Double Termination Applications
- Balanced Output Impedance
- Product offered in 64 pin TQFP package
- High impedance Bus pins on power off ($V_{CC} = 0V$)
- Driver Channel to Channel skew (same device) 230ps typical
- Receiver Channel to Channel skew (same device) 370ps typical


Simplified Functional Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Connection Diagram

Top View Order Number DS92LV090ATVEH See NS Package Number VEH064DB

Pinout Description

Pin Name	Pin #	Input/Output	Descriptions
DO+/RI+	27, 31, 35, 37, 41, 45, 47, 51, 55	I/O	True Bus LVDS Driver Outputs and Receiver Inputs.
DO-/RI-	26, 30, 34, 36, 40, 44, 46, 50, 54	I/O	Complimentary Bus LVDS Driver Outputs and Receiver Inputs.
D _{IN}	2, 6, 12, 18, 20, 22, 58, 60, 62	I	TTL Driver Input.
RO	3, 7, 13, 19, 21, 23, 59, 61, 63	0	TTL Receiver Output.
RE	17	I	Receiver Enable TTL Input (Active Low).
DE	16	I	Driver Enable TTL Input (Active High).
GND	4, 5, 9, 14, 25, 56	Power	Ground for digital circuitry (must connect to GND on PC board). These pins connected internally.
V _{cc}	10, 15, 24, 57, 64	Power	V _{CC} for digital circuitry (must connect to V _{CC} on PC board). These pins connected internally.
AGND	28, 33, 43, 49, 53	Power	Ground for analog circuitry (must connect to GND on PC board). These pins connected internally.
AV _{CC}	29, 32, 42, 48, 52	Power	Analog V_{CC} (must connect to V_{CC} on PC board). These pins connected internally.
NC	1, 8, 11, 38, 39	N/A	Leave open circuit, do not connect.

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	4.0V
Enable Input Voltage	
(DE, RE)	–0.3V to (V _{CC} +0.3V)
Driver Input Voltage (D _{IN})	-0.3V to (V _{CC} +0.3V)
Receiver Output Voltage	
(R _{OUT})	–0.3V to (V _{CC} +0.3V)
Bus Pin Voltage (DO/RI±)	-0.3V to +3.9V
ESD (HBM 1.5 kΩ, 100 pF)	>4.5 kV
Driver Short Circuit Duration	momentary
Receiver Short Circuit Duration	momentary
Maximum Package Power Dissipa	tion at 25°C
TQFP	1.74 W
Derate TQFP Package	13.9 mW/°C

θ_{ja} θ_{jc}	71.7°C/W 10.9°C/W
Storage Temperature Range	–65°C to +150°C
Lead Temperature	
(Soldering, 4 sec.)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	3.0	3.6	V
Receiver Input Voltage	0.0	2.4	V
Operating Free Air Temperature	-40	+85	°C
Maximum Input Edge Rate			
(Note 6)(20% to 80%)			$\Delta t / \Delta V$
Data		1.0	ns/V
Control		3.0	ns/V

DC Electrical Characteristics

Over recommended operating supply voltage and temperature ranges unless otherwise specified (Notes 2, 3)

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_{L} = 27\Omega, Figure 1$	DO+/RI+, DO-/RI-	240	300	460	mV
ΔV_{OD}	V _{OD} Magnitude Change					27	mV
Vos	Offset Voltage			1.1	1.3	1.5	V
ΔV_{OS}	Offset Magnitude Change				5	10	mV
V _{OH}	Driver Output High Voltage	$R_L = 27\Omega$			1.4	1.65	V
V _{OL}	Driver Output Low Voltage	$R_{L} = 27\Omega$		0.95	1.1		V
I _{OSD}	Output Short Circuit Current (Note 10)	$V_{OD} = 0V$, DE = V_{CC} , Driver outputs shorted together			36	65	mA
V _{OH}	Voltage Output High	$V_{ID} = +300 \text{ mV}$ $I_{OH} = -400 \mu\text{A}$	R _{OUT}	V _{CC} -0.2			V
	(Note 11)	Inputs Open		V _{CC} -0.2			V
		Inputs Terminated, $R_{L} = 27\Omega$		V _{cc} -0.2			V
V _{OL}	Voltage Output Low	$I_{OL} = 2.0 \text{ mA}, V_{ID} = -300 \text{ mV}$	1		0.05	0.075	V
I _{OD}	Receiver Output	$V_{ID} = 300 \text{mV}, V_{OUT} = V_{CC} - 1.0 \text{V}$		-110	75		mA
	Dynamic Current (Note 10)	$V_{ID} = -300 \text{mV}, V_{OUT} = 1.0 \text{V}$			75	110	mA
V _{TH}	Input Threshold High	DE = 0V, V _{CM} = 1.5V	DO+/RI+,			+100	mV
V _{TL}	Input Threshold Low]	DO-/RI-	-100			mV
V_{CMR}	Receiver Common Mode Range]	V _{ID} /2		2.4 – V _{ID} /2	V
I _{IN}	Input Current	$DE = 0V, \overline{RE} = 2.4V,$ $V_{IN} = +2.4V \text{ or } 0V$		-20	±1	+20	μA
		$V_{CC} = 0V, V_{IN} = +2.4V \text{ or } 0V$]	-20	±1	+20	μA

DC Electrical Characteristics (Continued)

Over recommended operating supply voltage and temperature ranges unless otherwise specified (Notes 2, 3)

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
V _{IH}	Minimum Input High Voltage		D _{IN} , DE, RE	2.0		V _{cc}	V
V _{IL}	Maximum Input Low Voltage			GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC}$ or 2.4V		-20	±10	+20	μA
I _{IL}	Input Low Current	$V_{IN} = GND \text{ or } 0.4V$		-20	±10	+20	μA
V _{CL}	Input Diode Clamp Voltage	I _{CLAMP} = -18 mA		-1.5	-0.8		V
I _{CCD}	Power Supply Current Drivers Enabled, Receivers Disabled	No Load, DE = \overline{RE} = V _{CC} , DIN = V _{CC} or GND	V _{cc}		55	80	mA
I _{CCR}	Power Supply Current Drivers Disabled, Receivers Enabled	$DE = \overline{RE} = 0V, V_{ID} = \pm 300 mV$			73	80	mA
I _{ccz}	Power Supply Current, Drivers and Receivers TRI-STATE®	DE = 0V; $\overline{RE} = V_{CC}$, DIN = V _{CC} or GND			35	80	mA
I _{cc}	Power Supply Current, Drivers and Receivers Enabled	$DE = V_{CC}; \overline{RE} = 0V,$ DIN = V _{CC} or GND, R _L = 27Ω			170	210	mA
I _{OFF}	Power Off Leakage Current	$V_{CC} = 0V \text{ or OPEN},$ $D_{IN}, DE, \overline{RE} = 0V \text{ or OPEN},$ $V_{APPLIED} = 3.6V (Port Pins)$	DO+/RI+, DO-/RI-	-20		+20	μA
C _{OUTPUT}	Capacitance @ Bus Pins		DO+/RI+, DO-/RI-		5		pF
COUTPUT	Capacitance @ R _{OUT}		R _{OUT}		7		pF

AC Electrical Characteristics

Over recommended operating supply voltage and temperature ranges unless otherwise specified (Note 6)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFEREN	TIAL DRIVER TIMING REQUIREMENTS					
t _{PHLD}	Differential Prop. Delay High to Low (Note 8)	$R_L = 27\Omega$,	0.6	1.4	2.2	ns
t _{PLHD}	Differential Prop. Delay Low to High (Note 8)	Figures 2, 3,	0.6	1.4	2.2	ns
t _{SKD1}	Differential Skew t _{PHLD} -t _{PLHD} (Note 9)	C _L = 10 pF		80		ps
t _{SKD2}	Chip to Chip Skew (Note 12)				1.6	ns
t _{SKD3}	Channel to Channel Skew (Note 13)			0.25	0.45	ns
t _{TLH}	Transition Time Low to High			0.6	1.2	ns
t _{THL}	Transition Time High to Low			0.5	1.2	ns
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$,		3	8	ns
t _{PLZ}	Disable Time Low to Z	Figures 4, 5,		3	8	ns
t _{PZH}	Enable Time Z to High	C _L = 10 pF		3	8	ns
t _{PZL}	Enable Time Z to Low			3	8	ns
DIFFEREN	TIAL RECEIVER TIMING REQUIREMENTS					_
t _{PHLD}	Differential Prop. Delay High to Low (Note 8)	Figures 6, 7,	1.6	2.4	3.2	ns
t _{PLHD}	Differential Prop Delay Low to High (Note 8)	C _L = 35 pF	1.6	2.4	3.2	ns
t _{SDK1}	Differential Skew t _{PHLD} -t _{PLHD} (Note 9)			80		ps
t _{SDK2}	Chip to Chip Skew (Note 12)				1.6	ns
t _{SDK3}	Channel to Channel Skew (Note 13)			0.35	0.60	ns
t _{TLH}	Transition Time Low to High			1.5	2.5	ns
t _{THL}	Transition Time High to Low			1.5	2.5	ns

DS92LV090A

AC Electrical Characteristics (Continued)

Over recommended operating supply voltage and temperature ranges unless otherwise specified (Note 6)

		· ·	· · · · · · · · · · · · · · · · · · ·	,		
Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFERENTIAL RECEIVER TIMING REQUIREMENTS						
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$,		4.5	10	ns
t _{PLZ}	Disable Time Low to Z	Figures 8, 9,		3.5	8	ns
t _{PZH}	Enable Time Z to High	C _L = 35 pF		3.5	8	ns
t _{PZL}	Enable Time Z to Low	•		3.5	8	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified except V_{OD} , ΔV_{OD} and V_{ID} .

Note 3: All typicals are given for V_{CC} = +3.3V and T_A = +25°C, unless otherwise stated.

Note 4: ESD Rating: HBM (1.5 kΩ, 100 pF) > 4.5 kV EIAJ (0Ω, 200 pF) > 300V.

Note 5: CL includes probe and fixture capacitance.

Note 6: Generator waveforms for all tests unless otherwise specified: f = 25 MHz, $Z_O = 50\Omega$, t_r , $t_f = <1.0 \text{ ns}$ (0%–100%). To ensure fastest propagation delay and minimum skew, data input edge rates should be equal to or faster than 1ns/V; control signals equal to or faster than 3ns/V. In general, the faster the input edge rate, the better the AC performance.

Note 7: The DS92LV090A functions within datasheet specification when a resistive load is applied to the driver outputs.

Note 8: Propagation delays are guaranteed by design and characterization.

Note 9: t_{SKD1} |t_{PHLD}-t_{PLHD}| is the worse case skew between any channel and any device over recommended operation conditions.

Note 10: Only one output at a time should be shorted, do not exceed maximum package power dissipation capacity.

Note 11: V_{OH} failsafe terminated test performed with 27Ω connected between RI+ and RI- inputs. No external voltage is applied.

Note 12: Chip to Chip skew is the difference in differential propagation delay between any channels of any devices, either edge.

Note 13: Channel to Channel skew is the difference in driver output or receiver output propagation delay between any channels within a device, either edge.

Applications Information

General application guidelines and hints may be found in the following application notes: AN-808, AN-903, AN-971, AN-977, and AN-1108.

There are a few common practices which should be implied when designing PCB for Bus LVDS signaling. Recommended practices are:

- Use at least 4 PCB board layer (Bus LVDS signals, ground, power and TTL signals).
- Keep drivers and receivers as close to the (Bus LVDS port side) connector as possible.
- Bypass each Bus LVDS device and also use distributed bulk capacitance between power planes. Surface mount capacitors placed close to power and ground pins work best. Two or three high frequency, multi-layer ceramic (MLC) surface mount (0.1 μ F, 0.01 μ F, 0.001 μ F) in parallel should be used between each V_{CC} and ground. The capacitors should be as close as possible to the V_{CC} pin.

Multiple vias should be used to connect V_{CC} and Ground planes to the pads of the by-pass capacitors.

In addition, randomly distributed by-pass capacitors should be used.

- Use the termination resistor which best matches the differential impedance of your transmission line.
- Leave unused Bus LVDS receiver inputs open (floating). Limit traces on unused inputs to <0.5 inches.
- Isolate TTL signals from Bus LVDS signals
- MEDIA (CONNECTOR or BACKPLANE) SELECTION:
- Use controlled impedance media. The backplane and connectors should have a matched differential impedance.

TABLE 1. Functional Table

MODE SELECTED	DE	RE
DRIVER MODE	Н	Н
RECEIVER MODE	L	L
TRI-STATE MODE	L	Н
LOOP BACK MODE	Н	L

TABLE 2. Transmitter Mode

INPUTS		OUT	PUTS
DE	D _{IN}	DO+	DO-
Н	L	L	Н
Н	Н	Н	L
Н	0.8V< D _{IN} <2.0V	Х	Х
L	Х	Z	Z

TABLE 3. Receiver Mode

	INPUTS	OUTPUT
RE	(RI+) – (RI–)	OUIFUI
L	L (< -100 mV)	L
L	H (> +100 mV)	Н
L	$-100 \text{ mV} < \text{V}_{ID} < +100 \text{ mV}$	Х
Н	Х	Z

X = High or Low logic state

L = Low state

Z = High impedance state H = High state

DS92LV090A

Test Circuits and Timing Waveforms

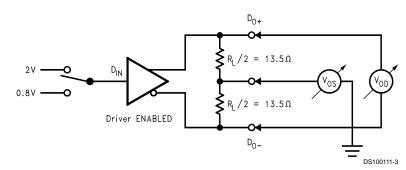
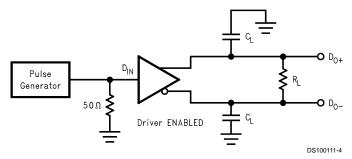



FIGURE 1. Differential Driver DC Test Circuit

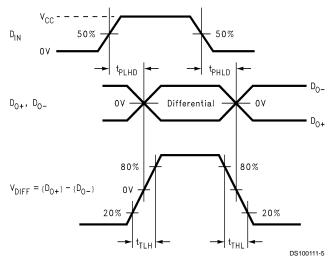
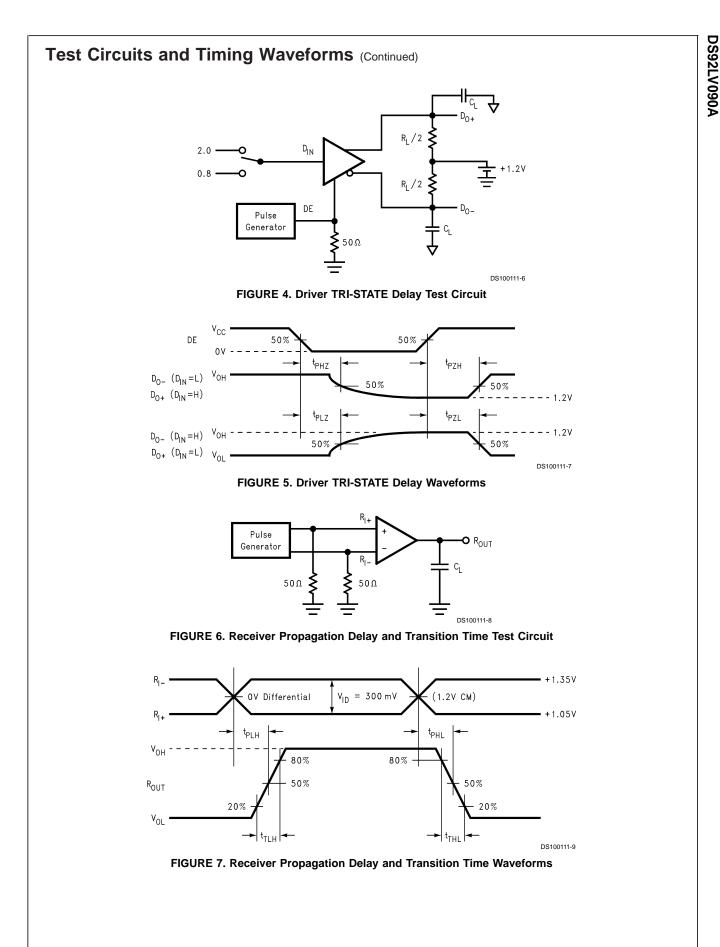
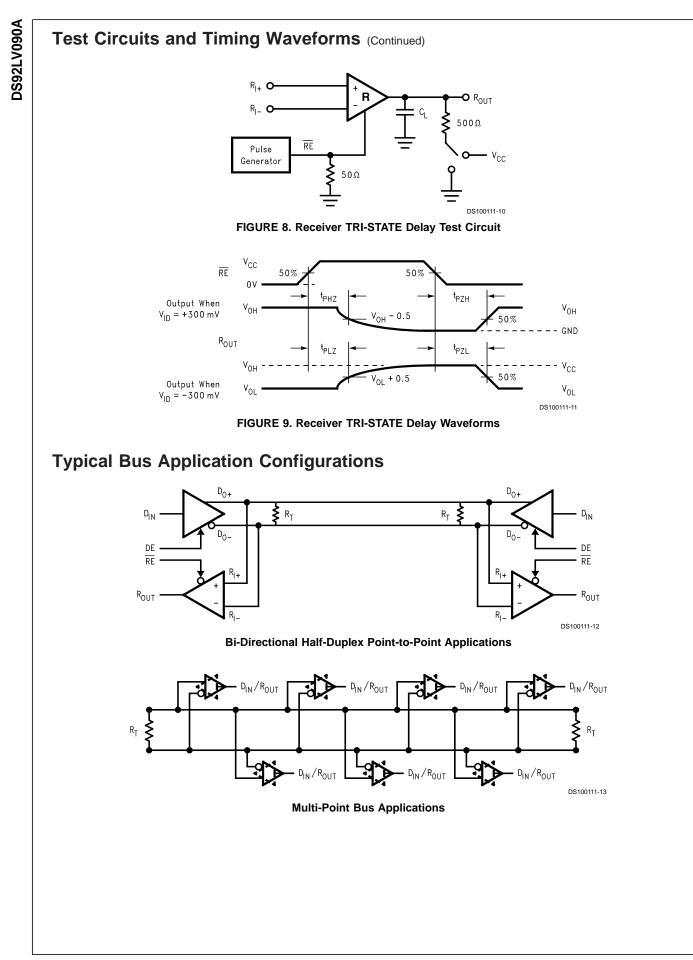
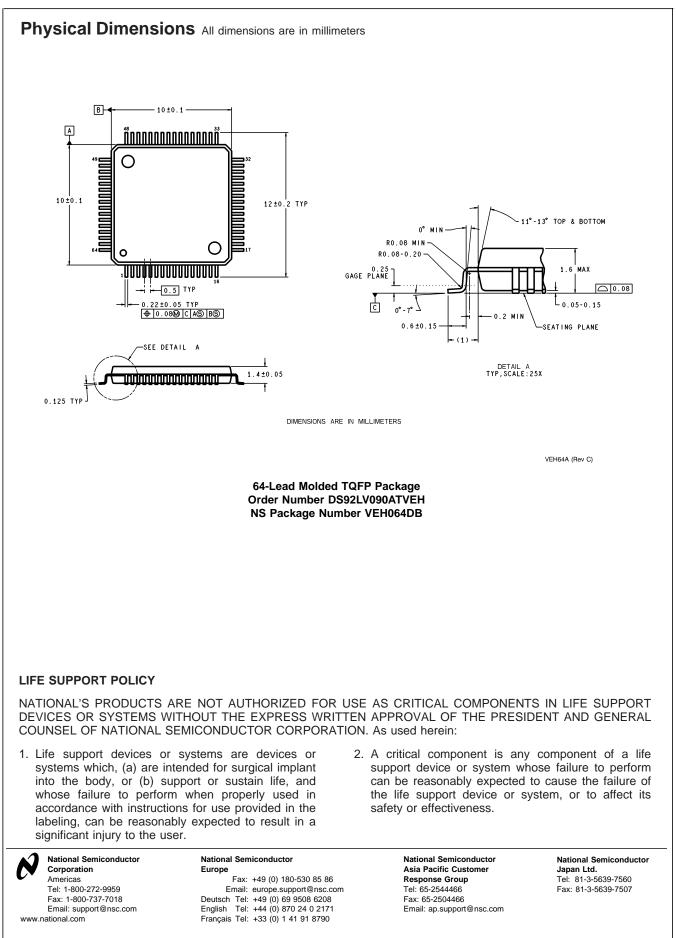





FIGURE 3. Differential Driver Propagation Delay and Transition Time Waveforms

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.