# 

## **Quad, SPST Analog Switch**

Withstands 2000V min ESD, per Method 3015.7

Single-Supply Operation +4.5V to +40V

Low Power Consumption (35µW max)

Rail-to-Rail<sup>®</sup> Signal Handling

TTL/CMOS-Logic Compatible

Bipolar-Supply Operation ±4.5V to ±20V

(4 $\Omega$  max)

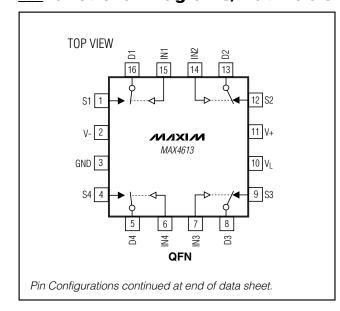
(9 $\Omega$  max)

(<5nA at +85°C)

Low RDS(ON) (85Ω max)

## **General Description**

The MAX4613 guad analog switch features on-resistance matching (4 $\Omega$  max) between switches and guarantees on-resistance flatness over the signal range (9 $\Omega$ max). This low on-resistance switch conducts equally well in either direction. It guarantees low charge injection (10pC max), low power consumption (35µW max), and an electrostatic discharge (ESD) tolerance of 2000V minimum per Method 3015.7. The new design offers lower off leakage current over temperature (less than 5nA at +85°C).


The MAX4613 guad, single-pole/single-throw (SPST) analog switch has two normally closed switches and the two normally open switches. Switching times are less than 250ns for tON and less than 70ns for tOFF. Operation is from a single +4.5V to +40V supply or bipolar  $\pm 4.5V$  to  $\pm 20V$  supplies.

### Applications

| Sample-and-Hold Circuits     | Communication Systems    |
|------------------------------|--------------------------|
| Test Equipment               | Battery-Operated Systems |
| Heads-Up Displays            | PBX, PABX                |
| Guidance and Control Systems | Audio Signal Routing     |
| Military Radios              | Modems/Faxes             |

## ems

**Pin Configurations/** Functional Diagrams/TruthTable



Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

## M/X/M

Maxim Integrated Products 1

16 TSSOP\*\*

Pin Compatible with Industry-Standard DG213 Guaranteed RON Match Between Channels Guaranteed RFLAT(ON) Over Signal Range Guaranteed Charge Injection (10pC max) Low Off Leakage Current Over Temperature

MAX4613

Features

| PART       | TEMP. RANGE    | PIN-PACKAGE    |
|------------|----------------|----------------|
| MAX4613CPE | 0°C to +70°C   | 16 Plastic DIP |
| MAX4613CSE | 0°C to +70°C   | 16 Narrow SO   |
| MAX4613CEE | 0°C to +70°C   | 16 QSOP        |
| MAX4613CUE | 0°C to +70°C   | 16 TSSOP**     |
| MAX4613C/D | 0°C to +70°C   | Dice*          |
| MAX4613EGE | -40°C to +85°C | 16 QFN         |
| MAX4613EPE | -40°C to +85°C | 16 Plastic DIP |
| MAX4613ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4613EEE | -40°C to +85°C | 16 QSOP        |

-40°C to +85°C

**Ordering Information** 

\*Contact factory for dice specifications. \*\*Contact factory for availability.

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX4613EUE

### **ABSOLUTE MAXIMUM RATINGS**

| Voltage Referenced to GND                                                | Continuous Power Dissipation ( $T_A = +70^{\circ}C$ ) |
|--------------------------------------------------------------------------|-------------------------------------------------------|
| V++44V                                                                   | Plastic DIP (derate 10.53mW/°C above +70°C)           |
| V44V                                                                     | Narrow SO (derate 8.70mW/°C above +70°C)              |
| V+ to V+44V                                                              | QSOP (derate 8.3mW/°C above +70°C)                    |
| V <sub>L</sub> (GND - 0.3V) to (V+ + 0.3V)                               | QFN (derate 19.2mW/C above +70°C)1538mW               |
| Digital Inputs V <sub>S</sub> V <sub>D</sub> (Note 1)(V 2V) to (V+ + 2V) | TSSOP (derate 6.7mW/°C above +70°C)457mW              |
| or 30mA (whichever occurs first)                                         | Operating Temperature Ranges                          |
| Continuous Current (any terminal)                                        | MAX4613C0°C to +70°C                                  |
| Peak Current, S_ or D_                                                   | MAX4613E40°C to +85°C                                 |
| (pulsed at 1ms, 10% duty cycle max)100mA                                 | Storage Temperature Range65°C to +165°C               |
|                                                                          | Lead Temperature (soldering, 10sec)+300°C             |

Note 1: Signals on S\_, D\_, or IN\_ exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS**—Dual Supplies

 $(V + = 15V, V - = -15V, V_L = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted.)

| PARAMETER                                | SYMBOL                   | CONDITIONS                                                            |                              | MIN   | TYP<br>(Note 2) | MAX   | UNITS |
|------------------------------------------|--------------------------|-----------------------------------------------------------------------|------------------------------|-------|-----------------|-------|-------|
| SWITCH                                   | 1                        |                                                                       |                              |       |                 |       | 1     |
| Analog Signal Range                      | V <sub>ANALOG</sub>      | (Note 3)                                                              |                              | -15   |                 | 15    | V     |
| Drain-Source On-Resistance               | Provenu                  | $V_D = \pm 10V$ ,                                                     | $T_A = +25^{\circ}C$         |       | 55              | 70    | Ω     |
| Dialit-Source Off-nesistance             | R <sub>DS</sub> (ON)     | $I_{S} = 1 m A$                                                       | $T_A = T_{MIN}$ to $T_{MAX}$ |       |                 | 85    | 52    |
| On-Resistance Match                      |                          | $V_D = \pm 10V$ ,                                                     | $T_A = +25^{\circ}C$         |       |                 | 4     | Ω     |
| Between Channels (Note 4)                | $\Delta R_{DS(ON)}$      | $I_{S} = 1 m A$                                                       | $T_A = T_{MIN}$ to $T_{MAX}$ |       |                 | 5     | 52    |
| On Registeres Eletrops (Note 4)          | Deuteropy                | $V_D = \pm 5V$ ,                                                      | $T_A = +25^{\circ}C$         |       |                 | 9     | Ω     |
| On-Resistance Flatness (Note 4)          | R <sub>FLAT</sub> (ON)   | I <sub>S</sub> = 1mA                                                  | $T_A = T_{MIN}$ to $T_{MAX}$ |       |                 | 15    | 52    |
| Source Leakage Current                   |                          | $V_D = \pm 14V$ ,                                                     | $T_A = +25^{\circ}C$         | -0.50 | 0.01            | 0.50  |       |
| (Note 5)                                 | IS(OFF)                  | Vs = ∓ 14V                                                            | $T_A = T_{MIN}$ to $T_{MAX}$ | -5    |                 | 5     | nA    |
| Drain-Off Leakage Current                | ID(OFF)                  | $ \begin{array}{c} ID(OFF) & V_D=\pm 14V,\\ V_S=\mp 14V \end{array} $ | $T_A = +25^{\circ}C$         | -0.50 | 0.01            | 0.50  |       |
| (Note 5)                                 |                          |                                                                       | TA = TMIN to TMAX            | -5    |                 | 5     | – nA  |
| Drain-On Leakage Current                 | Drain-On Leakage Current | $(1 V_1) = \pm 14V_1$                                                 | $T_A = +25^{\circ}C$         | -0.50 | 0.08            | 0.50  |       |
| (Note 5)                                 | or<br>I <sub>S(ON)</sub> | $V_{\rm S} = \pm 14 V$                                                | $T_A = T_{MIN}$ to $T_{MAX}$ | -10   |                 | 10    | — nA  |
| INPUT                                    |                          |                                                                       |                              |       |                 |       |       |
| Input Current with<br>Input Voltage High | linh                     | $V_{IN} = 2.4V$ , all others = 0.8V                                   |                              | -0.5  | -0.00001        | 0.5   | μA    |
| Input Current with<br>Input Voltage Low  | IINL                     | $V_{IN} = 0.8V$ , all others = 2.4V                                   |                              | -0.5  | -0.00001        | 0.5   | μA    |
| SUPPLY                                   | 1                        |                                                                       |                              |       |                 |       | 1     |
| Power-Supply Range                       | V+, V-                   |                                                                       |                              | ±4.5  |                 | ±20.0 | V     |
| Positive Supply Current                  | I+                       | All channels on or off,<br>$V_{IN} = 0$ or $5V$                       | $T_A = +25^{\circ}C$         | -1    | 0.001           | 1     | μΑ    |
|                                          |                          |                                                                       | $T_A = T_{MIN}$ to $T_{MAX}$ | -5    |                 | 5     |       |
| Nagativa Supply Current                  |                          | All channels on or off,                                               | $T_A = +25^{\circ}C$         | -1    | 0.001           | 1     |       |
| Negative Supply Current                  | -                        | $V_{IN} = 0 \text{ or } 5V$ $T_A = T_{MIN} \text{ to } T_{MAX}$       |                              | -5    |                 | 5     | - μΑ  |

## **ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)**

 $(V + = 15V, V - = -15V, V_L = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted.)

| PARAMETER                                 | SYMBOL             | SYMBOL CONDITIONS                                      |                              | MIN | TYP<br>(Note 2) | МАХ | UNITS |
|-------------------------------------------|--------------------|--------------------------------------------------------|------------------------------|-----|-----------------|-----|-------|
| Logio Supply Current                      | IL                 | All channels on or off,                                | $T_A = +25^{\circ}C$         | -1  | 0.001           | 1   |       |
| Logic Supply Current                      | I IL               | $V_{IN} = 0 \text{ or } 5V$                            | $T_A = T_{MIN}$ to $T_{MAX}$ | -5  |                 | 5   | μA    |
| Ground Current                            |                    | All channels on or off,                                | $T_A = +25^{\circ}C$         | -1  | -0.0001         | 1   |       |
| Ground Current                            | IGND               | $V_{IN} = 0 \text{ or } 5V$                            | $T_A = T_{MIN}$ to $T_{MAX}$ | -5  |                 | 5   | μA    |
| DYNAMIC                                   |                    |                                                        |                              |     |                 |     |       |
| Turn-On Time (Note 3)                     | ton                | $V_S = \pm 10V$ , Figure 2                             | $T_A = +25^{\circ}C$         |     | 150             | 250 | ns    |
| Turn-Off Time (Note 3)                    | tOFF               | $V_S = \pm 10V$ , Figure 2                             | $T_A = +25^{\circ}C$         |     | 90              | 120 | ns    |
| Break-Before-Make Time<br>Delay (Note 3)  | tD                 | Figure 3                                               | T <sub>A</sub> = +25°C       | 5   | 20              |     | ns    |
| Charge Injection (Note 3)                 | Q                  | $C_L = 1nF$ , $V_{GEN} = 0$ ,<br>RGEN = 0, Figure 4    | T <sub>A</sub> = +25°C       |     | 5               | 10  | рС    |
| Off-Isolation Rejection<br>Ratio (Note 6) | OIRR               | $R_L = 50\Omega$ , $C_L = 5pF$ ,<br>f = 1MHz, Figure 5 | T <sub>A</sub> = +25°C       |     | 60              |     | dB    |
| Crosstalk (Note 7)                        |                    | $R_L = 50\Omega$ , $C_L = 5pF$ ,<br>f = 1MHz, Figure 6 | $T_A = +25^{\circ}C$         |     | 100             |     | dB    |
| Source-Off Capacitance                    | CS(OFF)            | f = 1MHz, Figure 7                                     | $T_A = +25^{\circ}C$         |     | 4               |     | pF    |
| Drain-Off Capacitance                     | CD(OFF)            | f = 1MHz, Figure 7                                     | T <sub>A</sub> = +25°C       |     | 4               |     | pF    |
| Source-On Capacitance                     | Cs(ON)             | f = 1MHz, Figure 8                                     | $T_A = +25^{\circ}C$         |     | 16              |     | pF    |
| Drain-On Capacitance                      | C <sub>D(ON)</sub> | f = 1MHz, Figure 8                                     | $T_A = +25^{\circ}C$         |     | 16              |     | pF    |

### ELECTRICAL CHARACTERISTICS—Single Supply

 $(V + = 12V, V - = 0V, VL = 5V, GND = 0V, VINH = 2.4V, VINL = 0.8V, TA = T_{MIN}$  to T<sub>MAX</sub>, unless otherwise noted.)

| PARAMETER               | SYMBOL              | CONDITIONS                      |                              |     | TYP<br>(Note 2) | МАХ                          | UNITS |  |   |
|-------------------------|---------------------|---------------------------------|------------------------------|-----|-----------------|------------------------------|-------|--|---|
| SWITCH                  |                     |                                 |                              |     |                 |                              |       |  |   |
| Analog Signal Range     | VANALOG             |                                 |                              | 0   |                 | 12                           | V     |  |   |
| Drain-Source            | Provenu             | $V_L = 5V; V_D = 3V, 8V;$       | $T_A = +25^{\circ}C$         |     | 100             | 160                          | 0     |  |   |
| On-Resistance           | R <sub>DS(ON)</sub> | $I_{S} = 1 m A$                 | $T_A = T_{MIN}$ to $T_{MAX}$ |     |                 | 200                          | Ω     |  |   |
| SUPPLY                  |                     |                                 |                              |     |                 |                              |       |  |   |
| Power-Supply Range      | V+, V-              |                                 |                              | 4.5 |                 | 40                           | V     |  |   |
| Dowor Supply Current    | 1.                  | All channels on or off,         | $T_A = +25^{\circ}C$         | -1  | 0.001           | 1                            |       |  |   |
| Power-Supply Current    | +                   | $V_{IN} = 0 \text{ or } 5V$     | $T_A = T_{MIN}$ to $T_{MAX}$ | -5  |                 | 5                            | μA    |  |   |
| Nagativa Supply Current | l-                  | All channels on or off,         | $T_A = +25^{\circ}C$         | -1  | -0.0001         | 1                            |       |  |   |
| Negative Supply Current |                     | 1-                              | 1-                           | 1-  |                 | $T_A = T_{MIN}$ to $T_{MAX}$ | -5    |  | 5 |
| Logic Supply Current IL |                     | All channels on or off,         | $T_A = +25^{\circ}C$         | -1  | 0.001           | 1                            |       |  |   |
|                         |                     | VIN = 0 or 5V                   | TA = TMIN to TMAX            | -5  |                 | 5                            | μA    |  |   |
| Ground Current IGND     | 1                   | All channels on or off,         | $T_A = +25^{\circ}C$         | -1  | -0.0001         | 1                            |       |  |   |
|                         | IGND                | VIN = 0 or 5V TA = TMIN to TMAX |                              | -5  | -5 5            | 5                            | - μΑ  |  |   |

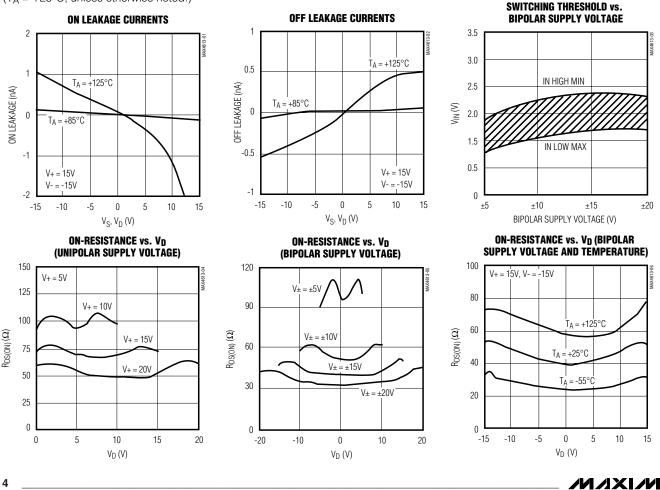
### ELECTRICAL CHARACTERISTICS—Single Supply (continued)

(V+ = 12V, V- = 0, VL = 5V, GND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

| PARAMETER                 | SYMBOL | CONDITIONS                                                |                        |  | TYP<br>(Note 2) | МАХ | UNITS |
|---------------------------|--------|-----------------------------------------------------------|------------------------|--|-----------------|-----|-------|
| DYNAMIC                   |        |                                                           |                        |  |                 |     |       |
| Turn-On Time (Note 3)     | ton    | V <sub>S</sub> = 8V, Figure 2                             | $T_A = +25^{\circ}C$   |  | 300             | 400 | ns    |
| Turn-Off Time (Note 3)    | tOFF   | V <sub>S</sub> = 8V, Figure 2                             | $T_A = +25^{\circ}C$   |  | 60              | 200 | ns    |
| Charge Injection (Note 3) | Q      | $C_L = 1nF$ , $V_{GEN} = 0$ ,<br>$R_{GEN} = 0$ , Figure 4 | T <sub>A</sub> = +25°C |  | 5               | 10  | рС    |

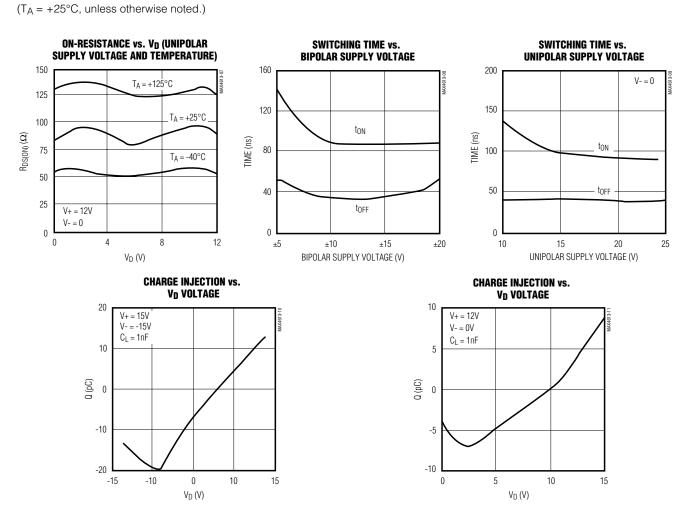
Note 2: Typical values are for design aid only, are not guaranteed and are not subject to production testing. The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: Guaranteed by design.


Note 4: On-resistance match between channels and flatness are guaranteed only with bipolar-supply operation. Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured at the extremes of the specified analog signal range.

Note 5: Leakage parameters IS(OFF), ID(OFF), ID(ON), and IS(ON) are 100% tested at the maximum rated hot temperature and guaranteed at +25°C. **Note 6:** Off-Isolation Rejection Ratio =  $20\log (V_D/V_S)$ .

Note 7: Between any two switches.


 $(T_A = +25^{\circ}C, unless otherwise noted.)$ 

## **Typical Operating Characteristics**



**MAX4613** 

## **Typical Operating Characteristics (continued)**



#### Pin Description

| PI           | N            |         | FUNCTION                                             |  |
|--------------|--------------|---------|------------------------------------------------------|--|
| DIP/SO/TSSOP | QFN          | NAME    | FUNCTION                                             |  |
| 1, 8, 9, 16  | 6, 7, 14, 15 | IN1–IN4 | Logic Control Input                                  |  |
| 2, 7, 10, 15 | 5, 8, 13, 16 | D1–D4   | Analog-Switch Drain Output                           |  |
| 3, 6, 11, 14 | 1, 4, 9, 12  | S1–S4   | -S4 Analog-Switch Source Output                      |  |
| 4            | 2            | V-      | Negative-Supply Voltage Input                        |  |
| 5            | 3            | GND     | Ground                                               |  |
| 12           | 10           | VL      | VL Logic-Supply Voltage Input                        |  |
| 13           | 11           | V+      | Positive-Supply Voltage Input—Connected to Substrate |  |

## **Applications Information**

#### **General Operation**

- 1) Switches are open when power is off.
- 2) IN\_, D\_, and S\_ should not exceed V+ or V-, even with the power off.
- Switch leakage is from each analog switch terminal to V+ or V-, not to other switch terminals.

#### Operation with Supply Voltages Other than ±15V

Using supply voltages less than  $\pm 15V$  will reduce the analog signal range. The MAX4613 operates with  $\pm 4.5V$  to  $\pm 20V$  bipolar supplies or with a  $\pm 4.5V$  to  $\pm 40V$  single supply; connect V- to GND when operating with a single supply. Also, all device types can operate with unbalanced supplies such as  $\pm 24V$  and  $\pm 5V$ . VL must be connected to  $\pm 5V$  to be TTL compatible, or to V+ for CMOS-logic level inputs. The *Typical Operating Characteristics* graphs show typical on-resistance with  $\pm 20V$ ,  $\pm 15V$ ,  $\pm 10V$ , and  $\pm 5V$  supplies. (Switching times increase by a factor of two or more for operation at  $\pm 5V$ .)

#### **Overvoltage Protection**

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by V<sub>L</sub>, V-, and logic inputs. If power-supply sequencing is not possible, add two small, external signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to 1V below V+ and 1V above V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between V+ and Vshould not exceed +44V.

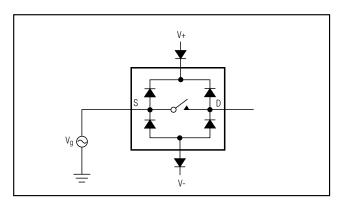
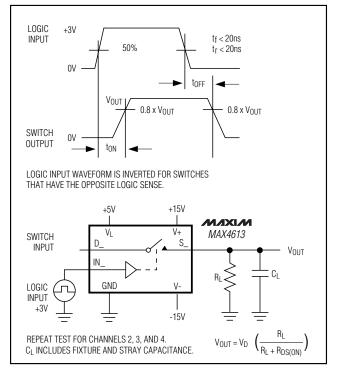




Figure 1. Overvoltage Protection Using External Blocking Diodes



**Quad, SPST Analog Switch** 



## Timing Diagrams/Test Circuits

Figure 2. Switching Time

Figure 3. Break-Before-Make Test Circuit

**MAX4613** 

**MAX4613** 

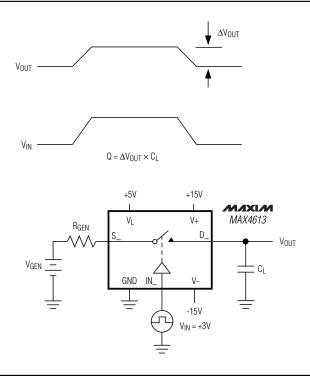



Figure 4. Charge Injection

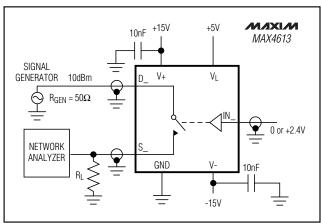



Figure 5. Off-Isolation Rejection Ratio

## Timing Diagrams/Test Circuits (continued)

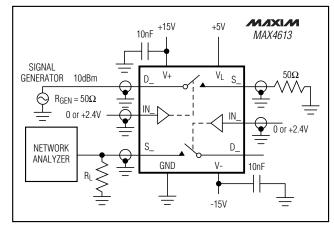



Figure 6. Crosstalk

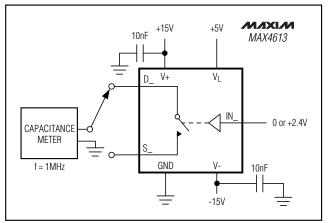
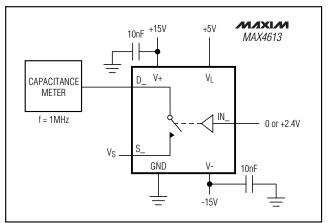
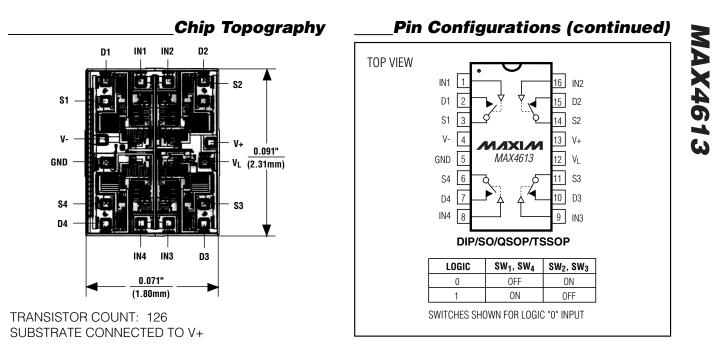
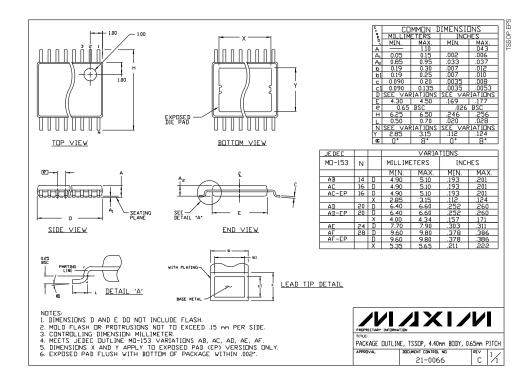
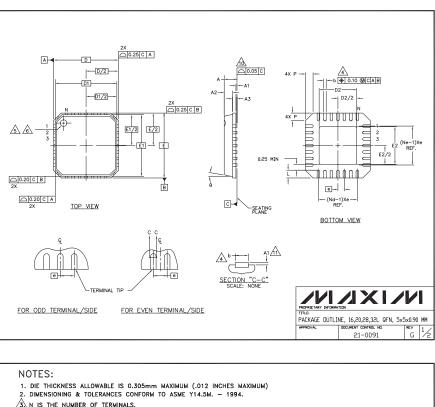
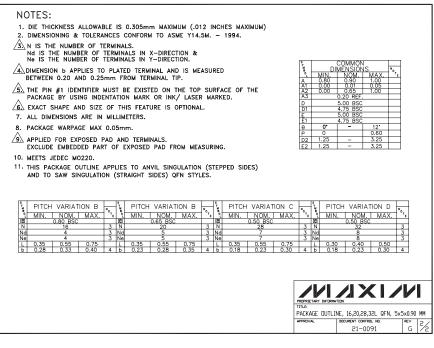



Figure 7. Source/Drain-Off Capacitance



Figure 8. Source/Drain-On Capacitance






#### **Package Information**





## \_Package Information (continued)



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

#### \_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2001 Maxim Integrated Products

10

Printed USA

**MAXIM** is a registered trademark of Maxim Integrated Products.