## Features

- Designed for Digital Photography, Graphic Arts, Medical and Scientific Applications
- Pixel 14 µm x 14 µm Photomos with 100% Aperture
- Image Zone: 28.67 mm x 28.67 mm
- Frame Readout Through 1, 2 or 4 Outputs
- Data Rates up to 4 x 20 MHz (Compatibility with 15 Frames/Second)
- Possible Binning 2 x 2 Pixels (Format 1024 x 1024 with Pixels of 28 μm x 28 μm)
- High Dynamic Range (up to 12600:1) even at:
  - Room Temperature
  - 20 MHz/Output
- Very Low Dark Current (MPP Mode)
- Optimized Resolution and Responsivity in the 400 1100 nm Spectrum
- Other Possible Full Frame Operating Modes:
  - 1536 x 2048 Pixels of 14 μm x 14 μm
  - 768 x 1024 Pixels of 28 μm x 28 μm
- Compatible with Fiber Optic Face Plate Coupling
- On Request: Frame Transfer Architecture (On-chip Memory Defined by Mechanical
  - Shielding) Featuring:
    - 1024 (V) x 2048 (H) Active Pixels of 14  $\mu m$  x 14  $\mu m$
    - 512 (V) x 1024 (H) Active Pixels of 28  $\mu m$  x 28  $\mu m$
    - 512 (V) x 2048 (H) Active Pixels of 14  $\mu m$  x 14  $\mu m$

Figure 1. TH7899M Organization





Full Field CCD Image Sensor 2048 x 2048 Pixels

# TH7899M

Rev. 2201A-IMAGE-02/02

| General Description | The TH7899M sensor is a 2048 x 2048 full frame Charge Couple Device (CCD) designed for a wide range of applications due to both its operating mode flexibility and its high dynamic range combined with its high resolution. The device is 180° symmetrical so if it is not plugged in the right side it will not be damaged. |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | The nominal photosensitive area is made up of 2048 x 2048 useful pixels split vertically in 4 zones A, B, C and D. Each zone can be driven separately by four-phase clocks ( $\Phi$ P1 $\Phi$ P2 $\Phi$ P3 and $\Phi$ P4) allowing different operating modes as described in "Image Area" on page 3.                          |
|                     | There are two identical horizontal shift registers: one at the top of the image area (regis-<br>ter A) and one at the bottom (register B). At each end of the two readout registers, a<br>summing gate is located which can be clocked to allow a horizontal pixel summation in<br>front of the on-chip output amplifier.     |
| Applications        | <ul><li>The TH7899M sensor is particularly suited to the following applications:</li><li>Digital photography</li><li>Medical applications</li></ul>                                                                                                                                                                           |

- Graphic arts
- Industrial applications
- Scientific applications

# Functional Description

## Pixel

The pixel size is 14  $\mu m$  x 14  $\mu m$  with 100% aperture. The following figures show the pixel structure.

Figure 2. Front View of a Photoelement





**Figure 3.** Cross Sectional View (AA') of a Photoelement and Potential Profile During Integration



There are mainly three different modes which can square with different optical formats, with readout optimized in speed or with simplified operating conditions.







| Active Pixel<br>Number                     | Image Zone Dimension                                       | Useful<br>Zones  | Used<br>Readout<br>Register | Number of<br>Possible<br>Outputs | Configu-<br>ration to<br>be Used | Characteristics                                      |
|--------------------------------------------|------------------------------------------------------------|------------------|-----------------------------|----------------------------------|----------------------------------|------------------------------------------------------|
| 2048 (V) x 2048 (H)                        | 28.67 mm (V) x 28.67 mm (H)                                | A, B, C<br>and D | В                           | 1 or 2                           | 1                                | Simplified operating conditions                      |
| 2048 (V) x 2048 (H)                        | 28.67 mm (V) x 28.67 mm (H)                                | A, B, C<br>and D | A and B                     | 2 or 4                           | 2                                | 2048 x 2048 optimized data rate                      |
| 1024 (V) x 2048 (H)                        | 14.34 mm (V) x 28.67 mm (H)                                | C and D          | В                           | 1 or 2                           | 2                                | Adapted optical format                               |
| 1536 (V) x 2048 (H)<br>1365 (V) x 2048 (H) | 21.50 mm (V) x 28.67 mm (H)<br>19.11 mm (V) x 28.67 mm (H) | B, C<br>and D    | В                           | 1 or 2                           | 3                                | Adapted optical format<br>Equivalent 24 x 36mm ratio |
| 512 (V) x 2048 (H)                         | 7.17 mm (V) x 28.67 mm (H)                                 | А                | А                           | 1 or 2                           | 3                                | Adapted optical format                               |

Note: 1. Binned modes (2 x 2 or 2 x 1) can be used which will lead to specific binned formats in particular the format 1024 x 1024 with an equivalent pixel size of 28 µm x 28 µm.

#### Frame Transfer Modes (Option On Package On Request)

These cases involve placing an optical shield in the package (on request) to define one or two memory zones according to the application shown in the figures below.



**Configuration 4** 



Configuration 5

| Active Pixel<br>Number | Image Zone Dimension        | Useful<br>Zones | Used<br>Readout<br>Register | Number of<br>Possible<br>Outputs | Configu-<br>ration to<br>be Used | Characteristics                             |
|------------------------|-----------------------------|-----------------|-----------------------------|----------------------------------|----------------------------------|---------------------------------------------|
| 1024 (V) x 2048 (H)    | 14.34 mm (V) x 28.67 mm (H) | C and D         | В                           | 1 or 2                           | 4                                | 1024 x 2048 simplified operating conditions |
| 1024 (V) x 2048 (H)    | 14.34 mm (H) x 28.67 mm (H) | B and C         | A and B                     | 2 or 4                           | 5                                | 1024 x 2048 optimized data rate             |
| 512 (V) x 2048 (H)     | 7.17 mm (V) x 28.67 mm (H)  | А               | А                           | 1 or 2                           | 5                                | Adapted optical format                      |

Note: 1. Binned modes (2 x 2 or 2 x 1) can be used, this will lead to specific binned formats, in particular, the format 512 x 1024 with an equivalent pixel size of 28 μm x 28 μm.

# TH7899M

## **Horizontal Registers**

The sensor has two readout registers located at the top (register A) and at the bottom (register B) of the image area. They can be driven independently by two phase clocks. Nevertheless to allow a multiple charge transfer direction for the useful pixels (left, right or half left and half right), the two clocks are split into 6 clocks ( $\Phi LA_{i=1 \text{ to } 6}$  for the A register and  $\Phi LB_{i=1 \text{ to } 6}$  for the register B). The transfer direction is fixed by the connection mode of the six clocks into 2 clocks.

The description of the connection with the transfer direction is described in "" on page 9.

The readout register has 2072 stages, with a further 18 extra stages at each end. Whatever the chosen transfer direction for the useful pixels, the 18 extra pixels, the 7 dark references and the 5 isolations are always transferred to the nearest output as shown in the figure hereunder.







## **Binned Modes**

Two types of summation can be performed:

- Vertical summation in each stage of the serial register (A or B)
- Horizontal summation in an output summing well driven by ΦS clock and located at each end of the readout registers (A and B).

Nevertheless, one summation can be performed in both the register and the output summing, allowing in this way, to have a resulting signal of  $(2 \times 2)$  contiguous pixels from the image area. Thus, the sensor is equivalent to a 1024 x 1024 array of a 28 µm x 28 µm pixel. When using the binned mode with a charge level, after summation, smaller than 300 ke- (typical value) it is better (optimization of dynamic and linearity) to keep the conversion factor at 7 µV/e- (with VGL = 1V and VDR = 13.5V). But for summing mode with charge level, after binning, higher than 300 ke-, the conversion factor should be reduced by increasing the VGL gate to 12V and the VDR reset drain to 15V. With such a method, the saturation charge is optimized for the binning mode.

This summing technique leads to an increased signal to noise ratio, larger pixel size, higher frame rates (for vertical binning only) but at the expense of a loss in resolution.





## **Output Amplifiers**

The TH7899M sensor has four output amplifiers. These are located in each corner of the device at the ends of the readout register. Charge packets are clocked to a precharge capacitor (floating diffusion) whose potential varies linearly with the quantity of charge in each packet. This potential is applied to the input gate of a two stage source follower amplifier and the output signal is read. Then, the reset clock  $\Phi R$  removes the charge from the floating diffusion via the reset drain VDR which imposes its reference level.

Figure 5. On-chip Output Amplifier Structure



# Multi-Pinned-Phase (MPP) Mode

The TH7899M sensor operates in the MPP mode in order to substantially decrease dark current (typically from 0.6 nA/cm<sup>2</sup> to 25 pA/cm<sup>2</sup> at 25°C). Compared to standard technology, the MPP mode allows, while keeping all other performances unchanged, either to increase exposure time, or to operate at higher temperature.

Dark current is due to thermal generation in the substrate of the CCD. The different generation sources are as follows:

- surface states at the Si-SiO<sub>2</sub> interface which is the main contribution
- generation and diffusion in the bulk
- generation in the depleted zone

If the gates are biased with adequate negative biases, holes appear at the  $Si-SiO_2$  interface and fill in the interface states suppressing their dark current contribution. As a result, only the minor bulk and depleted zone contributions remain.

## **Absolute Maximum Ratings\***

| Storage temperature                 | *NOTICE: Stresses above those listed under ABSOLUTE  |
|-------------------------------------|------------------------------------------------------|
| Operating temperature40°C to + 85°C | device failure. Functionally at or above these lim-  |
| Temperature cycling15°C/mn          | ratings for extended periods may affect reliability. |

| Maximum Applied Voltage                                                                             | ·                   |
|-----------------------------------------------------------------------------------------------------|---------------------|
| Pins A3 A8 A13 A14 B3 B13 G1 G15 J1 J15 P3 P8 P13 R2 R3 R8 R13                                      | 0V (ground)         |
| Maximum voltage applied (VGB) with respect to the substrate VSS                                     |                     |
| Pins B5 B4 P12 P11 P4 P5 P6 P7 B12 B11 B10 B9 H15 H1 R6 R5 A10 A11 A5 A4 R12 R11 R4<br>R7 A9 A12 R1 | VGB  = 15V          |
| Pins B6 A6 B7 A7 P9 R9 P10 R10                                                                      | VGB  = 12V          |
| Pins R1 R15 A1 A15 A2 R14 P2 P14 B2 B14 P1 P15 B1 B15 K1 K15 F1 F15 L1 L15 E1 E15                   | VGB = -0.3 to 15.5V |
| Pins M1 M15 D1 D15                                                                                  | VGB = -0.3 to 12V   |
| Maximum voltage difference $\Delta V$ between two pins of each group                                |                     |
| Pin group: R6 R5 P4 P5 P6 P7 H1 R4 R7                                                               | ΔV  =15V            |
| Pin group: A10 A11 B12 B11 B10 B9 H15 A9 A12                                                        | ΔV  =15V            |
| Pin group: B5 B6 A5 A6 B4 B7 A4 A7 P12 P9 R12 R9 P11 P10 R11 R10 H1 H15                             | ΔV  =15V            |

## **Operating Range**

Operating range defines the limits between which the functioning is guaranteed.

Electrical limits of applied signals are given in the operating condition section.

#### Operating Shorting one of the video outputs to one of the input pins even temporarily, can permanently damage the output amplifier. **Precautions** Due to MPP mode or negative voltages, image zone clocks and readout registers do not

include ESD protection. To avoid degradation, the TH7899M device should be handled with a grounded bracelet and stored on a conductive layer used for shipment.

## **Operating Conditions** See "Pin-out/Pin Designation" on page 23.

### Table 1. DC Characteristics

| Parameter                                | Min.                      | Тур.                     | Max.                      | Notes                        |
|------------------------------------------|---------------------------|--------------------------|---------------------------|------------------------------|
| V <sub>S (1 to 4)</sub>                  |                           | 0V                       |                           |                              |
| V <sub>DD (1 to 4)</sub>                 | 14.5V                     | 15V                      | 15.5V                     |                              |
| V <sub>SS</sub>                          | 0V                        | 0V                       |                           |                              |
| V <sub>GS (1 to 4)</sub>                 | 3.7                       | 4V                       | 4.3V                      | 2V for MPP mode (option)     |
| V <sub>DR (1 to 4)</sub>                 | 13V/14.5V <sup>(1)</sup>  | 13.5V/15V <sup>(1)</sup> | 14V/15.5V <sup>(1)</sup>  |                              |
| V <sub>DE (A and B)</sub>                | 5.5V                      | 6V                       | 6.5V                      |                              |
| V <sub>GL (1 to 4)</sub>                 | 0.7V/11.7V <sup>(1)</sup> | 1V/12V <sup>(1)</sup>    | 1.3V/12.3V <sup>(1)</sup> | 0V/12V for MPP mode (option) |
| Note: 1. $V_{GL} = 12V$ and $V_{DR} = 1$ | 5V is only when us        | sing a summing m         | ode to optimize sa        | turation level.              |

1.  $V_{GL}$  = 12V and  $V_{DR}$  = 15V is only when using a summing mode to optimize saturation level.

The reference level (V<sub>s</sub>) of an unused output amplifier can be disconnected to avoid the consumption of this amplifier.





### Table 2. Drive Clock Characteristics

| Parameter                                                         |                            | Min.                        | Тур.                      | Max.                            | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------|----------------------------|-----------------------------|---------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Φ <sub>P1,2,4</sub><br>Φ <sub>P3</sub><br>ΦT <sub>(A and B)</sub> | Low<br>High<br>Low<br>High | -11V<br>+3.5V<br>-11V<br>0V | -9V<br>+4V<br>-9V<br>0.3V | -8.5V<br>+4.5V<br>-8.5V<br>0.6V | For each A,B,C and D zones, the<br>capacitances to drive are:<br>$C\Phi P1 = C\Phi P3 = 10 \text{ nF}$<br>$C\Phi P2 = C\Phi P4 = 13 \text{ nF}$<br>$C\Phi TA = C\Phi TB < 100 \text{ pF}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                   | High                       | +3.5V                       | +4V                       | +5V                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ΦL                                                                | Low<br>High                | -2.5V<br>+5.5V              | -3V<br>+6V                | -3.5V<br>+6.5V                  | -8V for MPP mode (option)<br>+3V for MPP mode (option)<br>For each A and B readout register and<br>after having tied the different clocks in two<br>clocks $\Phi$ L1 and $\Phi$ L2 and in the non MPP<br>mode (in the MPP mode the $\Phi$ L clock<br>capacitances are roughly 30% higher)<br>$\Phi L1 \qquad \Phi L2 \qquad $ |
| ΦS <sub>(1 to 4)</sub>                                            | Low<br>High                | -2.5V<br>+5.5V              | -3V<br>+6V                | 3.5V<br>+6.5V                   | -8V for MPP mode (option)<br>+3V for MPP mode (option)<br>For each summing gate: CΦS < 50 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ΦR (1 to 4)                                                       | Low<br>High                | 0V<br>+9V                   | 0.3V<br>+10V              | 0.6V<br>+11V                    | For each reset gate: $C\Phi R < 20 \text{ pF}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

**TH7899M** 

Only when using specific device with optical shield (on request)

Main Operating Modes and Selection Table for Vertical Transfer Number (vnb) and for Horizontal Transfer Number (hnb)

|                 | sks                                  |                                                                     | e<br>bed<br>sfer<br>:iming                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HORIZONTAL TRANSFERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | A, B, C, and D correspond to the clo | case of full frame timing diagram page 1 case of full frame timing. | PA, PB, PC, PD, MA, MB, MC, MD<br>correspond to the clocks described in it<br>timing diagram page 13 in case of fram<br>transfer timing with memory zone.<br>L1, L2, correspond to the clocks descr<br>in the timing diagram page 10.<br>vnb and hub are respectively the vertici<br>transfer number and the horizontal tran<br>number which shall be repeated in the<br>diagram described page 10.<br>The unused horizontal clocks (L, S, R)<br>shall be stated to their high level. | 2078 PIXEL PERIODS<br>hnb=2078<br>MODES 3-5-7-9-11:<br>LA1= LA4= LA5= L1<br>LA2= LA3= LA6= L2<br>MODES 1-5-7-9-11:<br>LB1= LB4= LB5= L1<br>LB1= LB4= LB6= L2<br>2078 PIXEL PERIODS<br>hnb=2078<br>MODES 4-6-8-10-12:<br>LA1= LA3= LA6= L1<br>LA1= LA3= LA6= L1<br>LA1= LA3= LA6= L1<br>LA1= LA3= LB6= L1<br>LA1= LB4= LB6= L1<br>LA1= LB4= LB6= L1<br>LA1= LA3= LA6= L1<br>1054 PIXEL PERIODS<br>hnb=1054<br>MODES 14-15-16-17-18:<br>LA1= LA3= LA6= L2<br>MODES 13-15-16-17-18:<br>LA1= LA3= LA6= L2<br>MODES 13-15-16-17-18:<br>LA1= LA3= LA6= L2<br>LA1= LA6= L2<br>LA1= LA6= L2<br>LA1= LA5= L1<br>L22= LA4= L66= L1<br>L22= L24= L66= L1<br>L22= L66 |
|                 | MUM                                  |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 7 4 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 520TRANSFERS MINI                    | vnb=520                                                             | MODES 11-12-18:<br>PAI= PD1= MA<br>PC1= PB1= PA<br><b>PA4= PD2= MB</b><br><b>PC2= PD4= PB</b><br>PC3= PB3= MC<br><b>PC3= PD3= MD</b><br><b>PC4= PB2= PD</b><br><b>PC4= PB2= PD</b><br>TG= MA                                                                                                                                                                                                                                                                                          | 3     ▲       ↑     ↓       ↑     ↓       3     ▲       1     ▲       3     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲       1     ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | MUM                                  |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 7 7 4 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | 1040 TRANSFERS MIN                   | vnb=1040                                                            | MODES 9-10-17 :<br>PAI= PB1= MA<br>PC1= PD1= PB<br>PC4= PD4= PB<br>PC4= PD4= PB<br>PC4= PD4= PB<br>PC4= PD3= PC<br>C3= PD3= PC<br>PC3= PD3= PC<br>PC3= PD2= PD<br>TA= PA                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} 3 \\ \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | MUM                                  |                                                                     | A B O D                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 5 5 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>RANSFERS</b> | 1560 TRANSFERS MINI                  | vnb=1560                                                            | MODES 7-8-16 :<br>PA1= PB1= PC1= PD1=<br>PA4= PB2= PC2= PD2=<br>PA3= PB3= PC3= PD3=<br>PA2= PB4= PC4= PD4=<br>TA= A<br>TB= A                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ALT             | MUM                                  |                                                                     | DCBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 2 4 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VERTIC.         | TRANSFERS MININ                      | vnb=1040                                                            | ES 5-6-15:<br>PB1= PC1= PD1=<br>PB4= PC2= PD2=<br>PB3= PC3= PD3=<br>PB2= PC4= PD4=<br>A                                                                                                                                                                                                                                                                                                                                                                                               | Amode 5<br>Amode 6<br>Amode 6<br>Amode 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | 1040                                 |                                                                     | MODI<br>PA1=<br>PA4=<br>PA3=<br>PA2=<br>TA=<br>TB=<br>TB=                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | SFERS MINIMUM                        | =2080                                                               | :14:<br>PCI= PDI= A<br>PC2= PD2= D<br>PC3= PD3= C<br>PC4= PD4= B                                                                                                                                                                                                                                                                                                                                                                                                                      | Mode 3         Mode 3         4           B         2         B         2           B         2         4         4           Mode 4         4         4           B         2         4           B         2         4           B         2         4           B         2         4           B         2         4           B         2         4           B         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 0 TRAN                               | vnb                                                                 | DES 3-4<br>= PB1=<br>= PB2=<br>= PB4=<br>: A<br>:Low lew                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | 1 208                                |                                                                     | MOI<br>Pa1<br>Pa2<br>Pa3<br>Pa4<br>Ta=<br>TB=<br>TB=                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4     0     4     0     4     0       0     4     0     4     0     1     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | 2080 TRANSFERS MINIMUN               | vnb=2080                                                            | ADDES 1-2-13 :<br>PA1= PB1= PC1= PD1= A<br>PA2= PB2= PC2= PD2= B<br>PA3= PB3= PC3= PD3= C<br>PA4= PB4= PC4= PD4= D<br>TA=Low level<br>TB= A                                                                                                                                                                                                                                                                                                                                           | 3     A       3     A       1     Mode 1       3     A       1     Mode 2       3     A       1     Mode 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





## **Timing Diagram**



## Full Frame Timing Diagram (Without Memory Zone)

Summation options:

vs = number of vertical summation (vs = 1 to sum 2 lines in the readout register),

hs = number of horizontal summation (hs = 0 to sum 2 pixels in the  $\phi$ S gate, only add the timing diagram once of figure 10),

vnb and hnb are defined according to the chosen operating mode in "" on page 9.

Cleaning period consists of emptying the image zone of all charges created by thermal generation. To achieve such cleaning, the readout time Treadout defined in the above diagram shall be used. Nevertheless, it is possible to reduce cleaning time of the image zone by accumulating several lines in the output register (Figure 7) before reading out the resulting signal (Figure 9). The number of accumulated lines is limited by the readout register saturation level.

Figure 6. Exposure Time



Figure 7. Vertical Transfer of One Line











Figure 9. Horizontal Transfer Period and Readout



12 **TH7899M** 

## Frame Transfer Timing (With Memory Zone(s))



The video line comprises:

- 18 inactive prescans
- 7 dark references
- 5 isolation elements
- 2048 useful pixels (readout through one output) or 1024 useful pixels (readout through 2 or 4 outputs)

Summation options:

vs = number of vertical summation (vs = 1 to sum 2 lines in the readout register),

hs = number of horizontal summation (hs = 0 to sum 2 pixels in the  $\phi$ S gate, only add the timing diagram once of figure 10),

vnb and hnb are defined according to the chosen operating mode in "" on page 9.

- Notes: 1. Cleaning period consists of emptying the image zone of all charges created by thermal generation. To achieve such cleaning, the vertical transfer of all of the image zone to the memory zone shall be clocked according to the diagram shown in figure 12.
  - 2. Memory zone cleaning period consists of emptying the memory zone of all charges created by thermal generation. To achieve such cleaning, the vertical transfer from the memory zone to the readout register shall be clocked according to the diagram shown in figure 9. Nevertheless, it is possible to reduce cleaning time of the memory zone by accumulating several lines in the readout register (figure 9) before reading out the resulting line signal (see figure 11). The number of accumulated lines is limited by the output register saturation level.









Figure 11. Horizontal Pixel Summation on  $\Phi$ S Gate (Two Adjacent Pixel Summation)





Figure 12. Horizontal Transfer Period and Readout

Figure 13. Vertical Transfer of One Line from the Image Zone to the Memory Zone







## Electrical Performance

## Table 3. Static And Dynamic Electrical Characteristics

|                                                   |        | Value |      |     |        |                                        |
|---------------------------------------------------|--------|-------|------|-----|--------|----------------------------------------|
| Parameter                                         | Symbol | Min   | Тур  | Max | Unit   | Remarks                                |
| DC Output Level <sup>(1)</sup>                    | Vref   |       | 10.5 |     | V      | VDR = 13.5V; VS = 0V                   |
| Output Impedance <sup>(1)</sup>                   | Zout   | 200   | 230  | 250 | Ω      |                                        |
| Output Amplifier Supply<br>Current <sup>(2)</sup> | IDD    |       | 10   |     | mA     | VDD = 15V;<br>VDR = 13.5V; VS = 0V     |
| Charge to Voltage Conversion<br>Factor            |        |       |      |     |        |                                        |
| With VGL = 1V and VDR = 13.5V                     | CVF1   | 6.6   | 7    | 7.4 | μ V/e- | For Standard Mode                      |
| With VGL = 12V and VDR = $15V$                    | CVF2   | 4.2   | 4.5  | 4.7 | μ V/e- | For Binning Mode                       |
| Image Zone To Readout<br>Register Frequency       | FV     |       | 100  | 180 | kHz    | Without Reduction Of Saturation Charge |
| Readout Register And Reset<br>Frequency           | FH     |       | 5    | 20  | MHz    |                                        |

Notes: 1. Measured on VOS1 VOS2 VOS3 and VOS4.

2. Measured in each VDD pin.

## Electrooptical Performance

General measurement conditions (unless specified):

- TC = 25°C (package temperature).
- Vertical transfer frequency FV = 100 kHz.
- Horizontal transfer frequency and output frequency FH = 5 MHz.

Illumination conditions:

• 3200K halogen lamp + 2 mm BG38 filter + F/3.5 aperture.

## Table 4. Electro-optical Performance Characteristics

|                                             |        | Value |     |     |      |                   |
|---------------------------------------------|--------|-------|-----|-----|------|-------------------|
| Parameter                                   | Symbol | Min   | Тур | Max | Unit | Remarks           |
| Saturation Output Voltage                   |        |       |     |     |      | (4)               |
| Without Binning                             | VSAT   | 1.4   | 1.9 |     | V    | (1)               |
| Saturation Charge of Elementary<br>Pixel    |        |       |     |     |      |                   |
| Without Binning                             | QSAT   | 220   | 270 |     | ke-  | (1)               |
| Saturation Charge of Readout<br>Registers   |        | 320   | 360 |     | ke-  | (2)               |
| Saturation Charge of Summing Gates $\Phi$ S |        | 550   | 630 |     | ke-  | (2)               |
| Saturation Level on the Output<br>Node      |        |       |     |     |      | (3)               |
| With VGL = $1V$ and VDR = $13.5V$           |        | 280   | 300 |     | ke-  | For Standard Mode |
| With VGL = 12V and VDR = 15V                |        | 530   | 570 |     | ke-  | For Binning Mode  |

Table 4. Electro-optical Performance Characteristics (Continued)

|                                                                                                                                 |        | Value   |         |     |                      |                                          |
|---------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------|-----|----------------------|------------------------------------------|
| Parameter                                                                                                                       | Symbol | Min     | Тур     | Max | Unit                 | Remarks                                  |
| Rms Output Amplifier Noise                                                                                                      |        |         |         |     |                      | (4)                                      |
| With a Bandwidth of 80MHz                                                                                                       | N1     |         | 20      |     | e-                   | Output Frequency = 20 MHz                |
| With a Bandwidth < 5MHz                                                                                                         | N2     |         | 5       |     | e-                   | Output Frequency < 1 MHz                 |
| Dark Current                                                                                                                    |        |         |         |     |                      |                                          |
| MPP Mode                                                                                                                        | 101    |         | 25      | 30  | pA/cm <sup>2</sup>   | T = 25°C                                 |
| Non MPP Mode                                                                                                                    | 102    |         | 0.6     | 1   | nA/cm <sup>2</sup>   | T = 25°C                                 |
| <b>Dynamic Range</b><br>Exposure Time =10 ms<br>Readout Time = 2s, FV = 100 kHz<br>Readout Through One Output                   | SNR    |         | 9800    |     |                      | T = 25°C, Without Binning <sup>(5)</sup> |
| <b>Photo-response Non Uniformity,</b><br>ග                                                                                      | PRNU   |         | 1       | 2.5 | % VOS                |                                          |
| Dark Signal Non Uniformity, $\sigma$<br>Exposure Time = 10 ms,<br>Readout Time = 2s, FV = 100 kHz<br>Readout Through One Output | DSNU   |         | 2.2     | 3   | mV                   | T = 25°C                                 |
| Horizontal Transfer Efficiency                                                                                                  | 1 -εH  | 0.99993 | 0.99997 |     |                      | (6)                                      |
| Vertical Transfer Efficiency                                                                                                    | 1 -εV  | 0.99998 | 0.99999 |     |                      |                                          |
| Contrast Transfer Function at<br>Nyquist Frequency                                                                              | CTF    |         | 67      |     | %                    |                                          |
| Responsivity                                                                                                                    | R      |         | 8.5     |     | V/µJ/cm <sup>2</sup> | With BG38 Filter                         |
| Linearity Error                                                                                                                 | LE     |         | < 1     |     | %                    | Without Binning                          |
| Flatness (Peak To Peak)                                                                                                         |        |         | 13      | 20  | μm                   |                                          |

Notes: 1. Saturation level is the maximum charge level before vertical transfer efficiency degradation (out of specification).

2. Saturation level is the maximum charge level before horizontal transfer efficiency degradation (out of specification).

3. Saturation level on output node can be optimized by running the readout register in MPP mode. Nevertheless, such a method implies that the capacitances of the  $\Phi$ L clocks are roughly 30% higher.

4. Measured with the Correlated Double Sampling (CDS).

5. Dynamic range is defined by the ratio of the saturation level to the temporal rms noise in darkness.

6. With a horizontal frequency maximum of 20 MHz, this value will be improved when decreasing this frequency.

Figure 14. Typical Spectral Response











The dynamic range is defined by the ratio of the saturation level to the temporal rms noise in darkness.

The increase of dynamic range with the vertical frequency is due to the reduction of dark current when the vertical frequency increases (in particular reduction of transfer time where the device is no longer in the MPP mode).

| Operating Mode  | Number of Used Outputs | Output Frequency (MHz) per Output | Exposure Time (ms) |
|-----------------|------------------------|-----------------------------------|--------------------|
| Conditions 1    | 1                      | 20                                | 50                 |
| Conditions 1bis | 1                      | 20                                | 100                |
| Conditions 2    | 4                      | 20                                | 50                 |
| Conditions 3    | 4                      | 10                                | 50                 |
| Conditions 4    | 1                      | 5                                 | 10                 |
| Conditions 4bis | 1                      | 5                                 | 2000               |
| Conditions 5    | 1                      | 2                                 | 10                 |

For output frequencies lower than 20 MHz/output, it is recommended to cut-off the output amplifier bandwidth by means of an off chip capacitance so as to minimize amplifier noise. To do so the output amplifier bandwidth has to be adjusted at 5 times the output frequency. The results given above take into account this optimization of amplifier noise.



Figure 16. Typical Dark Current Noise with Respect to the Temperature for Different Operating Conditions

All results have been calculated with a vertical frequency of 100 kHz.

| Operating Mode  | Number of Used Outputs | Output Frequency (MHz) per Output | Exposure Time (ms) |
|-----------------|------------------------|-----------------------------------|--------------------|
| Conditions 1    | 1                      | 20                                | 50                 |
| Conditions 1bis | 1                      | 20                                | 100                |
| Conditions 2    | 4                      | 20                                | 50                 |
| Conditions 3    | 4                      | 10                                | 50                 |
| Conditions 4    | 1                      | 5                                 | 10                 |
| Conditions 4bis | 1                      | 5                                 | 2000               |
| Conditions 5    | 1                      | 2                                 | 10                 |





| Preliminary Image<br>Grade Specifications | <ul> <li>Image quality grades are available:</li> <li>Grade H, ordering code TH7899MCRH</li> <li>Grade T, ordering code TH7899MCRT</li> <li>Grade E, ordering code TH7899MCRE</li> <li>These image quality grades are guaranteed at 25°C and provide a good image for applications at ambient temperature</li> </ul> |  |  |  |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                           | Operating temperature range: $0^{\circ}$ C to = $70^{\circ}$ C.                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Blemish Definition                        | <ul> <li>Column:<br/>It is one pixel in width and ≥ 7 pixel high defect whose height is constant with light level.</li> <li>Blemish:</li> </ul>                                                                                                                                                                      |  |  |  |  |  |  |
|                                           | There are usually three types of blemishes:                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                           | <ul> <li>White defect, dependent on temperature, as dark signal: its amplitude<br/>doubles for every 8 to 10°C temperature rise.</li> </ul>                                                                                                                                                                          |  |  |  |  |  |  |
|                                           | <ul> <li>Black defect, not dependent on temperature, but whose amplitude is<br/>proportional to the mean output voltage.</li> </ul>                                                                                                                                                                                  |  |  |  |  |  |  |
|                                           | White defects are specified in darkness, at +25°C                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                           | Black defects are specified under illumination, as a percentage of mean illumination up to VSAT/2 min independently of temperature.                                                                                                                                                                                  |  |  |  |  |  |  |
|                                           | Traps are specified as defects (white + black) in darkness, at +25°C.                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Image Grade                               | $\alpha$ is the amplitude of video signal of blemishes.                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Specifications                            | Eg: 20% < α                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                           | For amplitude < 20%, pixel is not a blemish.                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                           | Z1 is a square area, whose side is half of the height of the image zone, centered in the image zone.                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                                           | Z2 is the rest of the image zone.                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                           | Image grade is measured on VOS output signal, with 4 outputs operating mode (1s inte-<br>gration time in darkness, 100 kHz vertical frequency and 5 MHz horizontal frequency).                                                                                                                                       |  |  |  |  |  |  |
|                                           | Illumination conditions: 3200K Halogen lamp + BG38 filter + F/3.5.                                                                                                                                                                                                                                                   |  |  |  |  |  |  |

#### H Grade

|                                                       | Z                                    | :1                | Z1 + Z2                              |                   |  |  |
|-------------------------------------------------------|--------------------------------------|-------------------|--------------------------------------|-------------------|--|--|
| Type (White to Black)                                 | White defects in<br>darkness at 25°C | Defects at VSAT/2 | White defects in<br>darkness at 25°C | Defects at VSAT/2 |  |  |
| Pixels affected by blemishes<br>Area maximum (pixels) | 3                                    | 30<br>x2          | 150<br>2x2                           |                   |  |  |
| Amplitude $\alpha$                                    | α > 40 mV                            | 20%<   α          | α > 40 mV                            | 20%<   α          |  |  |
| Column number maximum Amplitude $\alpha$              | 0<br>α > 2 mV                        | 0<br>10% <  α     | 0<br>α > 2 mV                        | 0<br>10% <  α     |  |  |

### T Grade

|                                                       | Z                                    | :1                | Z1 + Z2                              |                   |  |  |
|-------------------------------------------------------|--------------------------------------|-------------------|--------------------------------------|-------------------|--|--|
| Type (White or Black)                                 | White defects in<br>darkness at 25°C | Defects at VSAT/2 | White defects in<br>darkness at 25°C | Defects at VSAT/2 |  |  |
| Pixels affected by blemishes<br>Area maximum (pixels) | 11                                   | 50<br>x2          | 600<br>2x2                           |                   |  |  |
| Amplitude $\alpha$                                    | α > 40 mV                            | 20% <  α          | α > 40 mV                            | 20%<  α           |  |  |
| Column number maximum<br>Amplitude α                  | 0<br>α > 2 mV                        | 5<br>10% <  α     | 0<br>α > 2 mV                        | 20<br>10% <  α    |  |  |

#### E Grade

|                                                       | Z                                    | <b>'</b> 1        | Z1 + Z2                                             |                |  |  |
|-------------------------------------------------------|--------------------------------------|-------------------|-----------------------------------------------------|----------------|--|--|
| Type (White or Black)                                 | White defects in<br>darkness at 25°C | Defects at VSAT/2 | White defects in<br>darkness at 25°C Defects at VS. |                |  |  |
| Pixels affected by blemishes<br>Area maximum (pixels) | 60<br>52                             | 00<br>x5          | 2000<br>5x5                                         |                |  |  |
| Amplitude $\alpha$                                    | α > 40 mV                            | 20%<  α           | α > 40 mV                                           | 20%<  α        |  |  |
| Column number maximum Amplitude $\alpha$              | 3<br>α > 2 mV                        | 10<br>10% <  α    | 10<br>α > 2 mV                                      | 40<br>10% <  α |  |  |





## **Outline Drawing**

The chip center is located at package center.



## **Pin-out/Pin Designation**

| AÍ | VDD3            |      | vss | ФРВ3 |      |      | ФР84 | vss | <b>♦</b> \$3 |       | ¢LA2 | <b>♦</b> \$4 | vss | vss  | VDD4     |
|----|-----------------|------|-----|------|------|------|------|-----|--------------|-------|------|--------------|-----|------|----------|
|    | VS3             | VDR3 | vss |      |      | ΦΡΑ2 | ФР82 | vss | φL A6        | QL A5 |      |              | vss |      | V54      |
| в  | VOSA            | 0    | 0   | O    | 0    | 0    | 0    | O   | 0            | 0     | 0    | 0            | 0   | 0    | U VOSA   |
| c  | Õ               |      |     |      |      |      |      |     |              |       |      |              |     |      | Õ        |
| D  | VGL3            |      |     |      |      |      |      |     |              |       |      |              |     |      | VGL₄     |
| E  | VGS3            |      |     |      |      |      |      |     |              |       |      |              |     |      | VGS4     |
| F  | ФR3             |      |     |      |      |      |      |     |              |       |      |              |     |      | ∳R4<br>◯ |
| -  | vss             |      |     |      |      |      |      |     |              |       |      |              |     |      | vss      |
| G  | 0               |      |     |      |      |      | TOP  | VIE | W            |       |      |              |     |      | 0        |
| н  | Φ <sup>TB</sup> |      |     |      |      |      |      |     |              |       |      |              |     |      | Õ        |
| J  | VSS             |      |     |      |      |      |      |     |              |       |      |              |     |      | VSS      |
| v  | ¢R1             |      |     |      |      |      |      |     |              |       |      |              |     |      | ΦR2      |
| r  | VGS1            |      |     |      |      |      |      |     |              |       |      |              |     |      | VGS2     |
| L  | 0               |      |     |      |      |      |      |     |              |       |      |              |     |      | 0        |
| Μ  | VGL1            |      |     |      |      |      |      |     |              |       |      |              |     |      | VGL2     |
| N  | VOS1            |      |     |      |      |      |      |     |              |       |      |              |     |      | VOS2     |
|    | VS1             | VDR1 | vss | ØLB3 | ¢LB4 | ØLB5 | ΦL86 | vss | ¢PC2         | ¢PD2  | ¢₽D1 | ¢PC1         | vss | VDR2 | VS2      |
| Р  | 0               | O    | O   | 0    | 0    | 0    | 0    | 0   | 0            | 0     | 0    | 0            | 0   | 0    | 0        |
| R  | Ö               | Õ    | Õ   | Õ    | O    | O    | Õ    | Ö   | Ö            | 0     | 0    | 0            | Õ   | OEB  | Ö        |
|    | 1               | 2    | 3   | 4    | 5    | 6    | 7    | 8   | 9            | 10    | 11   | 12           | 13  | 14   | 15       |

| Pin n°                                                                              | Symbol                             | Designation                                                                     |
|-------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------|
| R6, R5, P4, P5, P6, P7                                                              | ΦLB1, ΦLB2, ΦLB3, ΦLB4, ΦLB5, ΦLB6 | B readout register clocks                                                       |
| A10, A11, B12, B11, B10, B9                                                         | ΦLΑ1, ΦLΑ2, ΦLΑ3, ΦLΑ4, ΦLΑ5, ΦLΑ6 | A readout register clocks                                                       |
| R4, R7, A9, A12                                                                     | ΦS1, ΦS@, ΦS3, ΦS4                 | Summing clocks of the output 1, 2, 3 and 4                                      |
| M1, M15, D1, D15                                                                    | VGL1, VGL2, VGL3, VGL4             | Readout gate bias of the output 1, 2, 3 and 4                                   |
| L1, L15, E1, E15                                                                    | VGS1, VGS2, VGS3, VGS4             | Output gate bias of the output 1, 2, 3 and 4                                    |
| N1, N15, C1, C15                                                                    | VOS1, VOS2, VOS3, VOS4             | Output signal video 1, 2, 3 and 4                                               |
| R1, R15, A1, A15                                                                    | VDD1, VDD2, VDD3, VDD4             | Output amplifier drain supply of the output 1, 2, 3 and 4                       |
| P1, P15, B1, B15                                                                    | VS1, VS2, VS3, VS4                 | Output amplifier source bias of the output 1, 2, 3 and 4                        |
| K1, K15, F1, F15                                                                    | ΦR1, ΦR2, ΦR3, ΦR4                 | Reset clocks of the output 1, 2, 3 and 4                                        |
| P2, P14, B2, B14                                                                    | VDR1, VDR2, VDR3, VDR4             | Reset bias of the output 1, 2, 3 and 4                                          |
| B5, B6, A5, A6                                                                      | ΦΡΑ1, ΦΡΑ2, ΦΡΑ3, ΦΡΑ4             | A image zone clocks                                                             |
| B4, B7, A4, A7                                                                      | ΦΡΒ1, ΦΡΒ2, ΦΡΒ3, ΦΡΒ4             | B image zone clocks                                                             |
| P12, P9, R12, R9,                                                                   | ΦΡC1, ΦΡC2, ΦΡC3, ΦΡC4             | C image zone clocks                                                             |
| P11, P10, R11, R10                                                                  | ΦΡD1, ΦΡD2, ΦΡD3, ΦΡD4             | D image zone clocks                                                             |
| H15, H1                                                                             | ΦΤΑ, ΦΤΒ                           | Transfer gate from the image zone to the readout registers A and B respectively |
| A2, R14                                                                             | VDEA, VDEB                         | Shield drain                                                                    |
| A3, A8, A13, A14, B3, B8,<br>B13, G1, G15, J1, J15, P3,<br>P8, P13, R2, R3, R8, R13 | VSS                                | Substrate bias                                                                  |





#### **Atmel Headquarters**

*Corporate Headquarters* 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

#### Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

#### Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

#### **Atmel Operations**

*Memory* Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Microcontrollers Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Atmel Nantes La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards Atmel Rousset Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Atmel Smart Card ICs Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743 RF/Automotive Atmel Heilbronn Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Atmel Grenoble Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

*e-mail* literature@atmel.com

Web Site http://www.atmel.com

#### © Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL<sup>®</sup> is the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

